

Combinatorial Measurements of Polymer Craze Growth Using the Copper Grid Test Method

Kathryn L. Beers, Alfred J. Crosby and Alamgir Karim

COMBI Crazing

- COMBI thin films in the NCMC: gradients
- Polymer crystallization in thin films: iPS and PP
- Applying the Copper Grid Test to gradient thin films
- Composition gradients: filled polymer films
- Summary

Copper Grid Tests and Gradient Thin Films

- Isolate crazes in thin films
 - Well suited to gradients
- Statistical population of equally strained cells in one sample
- Copper plastically deforms to "lock-in" applied strain
- Use microscopy to analyze craze and fracture microstructures

Lauterwasser, B.D. and E.J. Kramer. "Microscopic mechanisms and mechanics of craze growth and fracture", *Phil. Mag. A*, **39**, *4*, 469-495, 1979.

Combinatorial Approach to Polymer Films: Gradients

Variables:

- •Film thickness
- Temperature
- Crosslink density
- Chemical functionality
- Crystallinity
- Composition
- Surface Patterns

Properties:

- Confinement
- Surface energy
- Adhesion energy
- Toughness
- Biocompatibility
- Miscibility / Phase separation
- Wettability

Poly(styrene-*b*-methyl methacrylate) *h* ~ 40 -120 nm

Poly(vinyl cinnamate) $h \sim 120 \text{ nm}$

Combinatorial / High-throughput

Polymer Crystallization

Isotactic Polystyrene

Crystallization Kinetics

Viscoelastic effect:
As melt becomes more viscous, spherulites form and rates slow down.

Surface tension anisotropy: Decrease in rate is observed in blends and thinning films.

Crystallization Morphologies

Polyolefin Crystallization Projects

- Nucleating Agents in Polypropylene (M. Walker)
 - Temperature and composition gradients in the presence of 4biphenyl carboxylic acid:

- Phase Separation vs.
 Crystallization (H. Wang)*
 - Poly(ethylene-co-hexene) / poly(ethylene-co-butene)
 - Temperature gradients

^{*} Wang, H., Hobbie, E. K., Shimizu, K., Wang, G. Z. G., Kim, H. D. and Han, C. C., "Competing Kinetics in Simultaneously Crystallizing and Phase-separating Polymer Blends", **J. Chem. Phys., 116,** 7311 (2002).

Combi Areas for Craze and Fracture Studies

Materials Capabilities:

- Thickness gradients
 - pS (tacticity)
 - pMMA
- Composition gradients
 - Silica particles in pS and pMMA matrices
 - Polymer blends
 - Plasticized films
- Temperature gradients
 - Crystallinity
- Crosslink-density gradients

COMBI Tools:

- Flow coating / Interferometry
- Composition changes from continuous sampling
- Image Analysis (IDL)
 - Fast and accurate
 - Consistent
 - New approaches to analysis!
- Chemical mapping with IR Microscopy
- Automated, gradient UV exposure

Library Fabrication

Validation: Polystyrene

- Majority of literature: h ≥ 100 nm
- Shoulder and neck regions in thicker films (mid-rib)
- Perforated microstructure in thin films (as opposed to discrete fibrils)

Microstructure & Film Thickness

all images: 800 nm

HT Image Analysis

Manual
Measurements: •-

h = 78 nm

h = 190 nm

Automated Measurements:

Craze Depth at the Crack Tip

Craze Depth at the Crack Tip

h = 190 nm

Filled Polymers: Composition Gradients

Breakup of filler aggregates inside craze

500 nm

Small voids induced in perforated microstructure by silica particles?

250 nm

Summary

- The Copper Grid Test method has been successfully adapted to a combinatorial and high throughput experiment using gradient film preparation methods and automated image analysis.
- Use of gradient films and automated image analysis not only accelerates the pace of experimentation, but reduces uncertainty, and can foster creative new ways of looking at experimental data.
- Future Directions:
 - Particle tracking during craze formation in filled polymers
 - Developing temperature and crystallinity gradients

Acknowledgments

Chris Stafford Mike Fasolka Marlon Walker